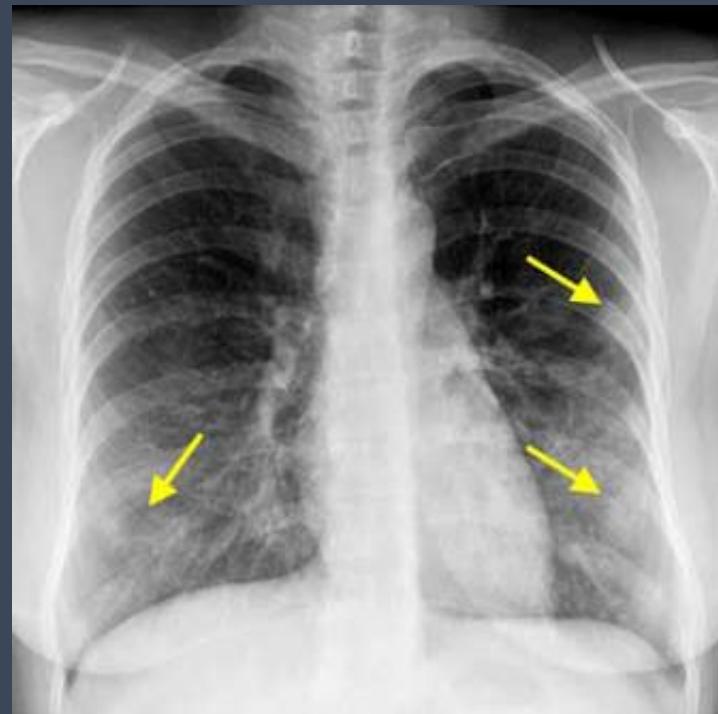


The Correlation of Chest X-Ray Characteristics and Severity Scores with Clinical Outcomes in COVID-19 Pneumonia Patients

ความสัมพันธ์ระหว่างลักษณะและคะแนนความรุนแรงของภาพรังสีทรวงอกกับผลลัพธ์ทางคลินิกของผู้ป่วยที่มีภาวะปอดอักเสบจากการติดเชื้อโควิด-19

Supawan Sukpairoh MD.

Department of Radiology, Angthong hospital


Introduction

- Coronavirus disease (COVID-19)
 - Caused by the **SARS-CoV-2 virus**
 - → Mild to moderate respiratory illness
 - → More likely to develop serious illness
 - Older people + Underlying medical conditions (e.g., cardiovascular disease, diabetes, etc.)

Introduction

- CXR findings related to COVID-19
 - Multifocal bilateral, peripheral opacities
 - Opacities with **rounded** morphology
 - Lower lung—predominant distribution

Objectives

- Describe the patient & CXR characteristics and severity scores
- Evaluate the correlation of patient & CXR characteristics and severity scores with clinical outcomes

Materials and Methods

Patients

Image acquisition

Image assessment

Statistical analyses

Patients

- Retrospective descriptive study
- **Patients with COVID-19 pneumonia at Angthong Hospital**
 18 years or older
(1 January - 31 December 2021)
- **305 patients**
 - 57 patients = **Moderate pneumonia**
 - 248 patients = **Severe pneumonia**

Image acquisition

Initial
CXR

HIGHEST
CXR

Image assessment: CXR characteristics

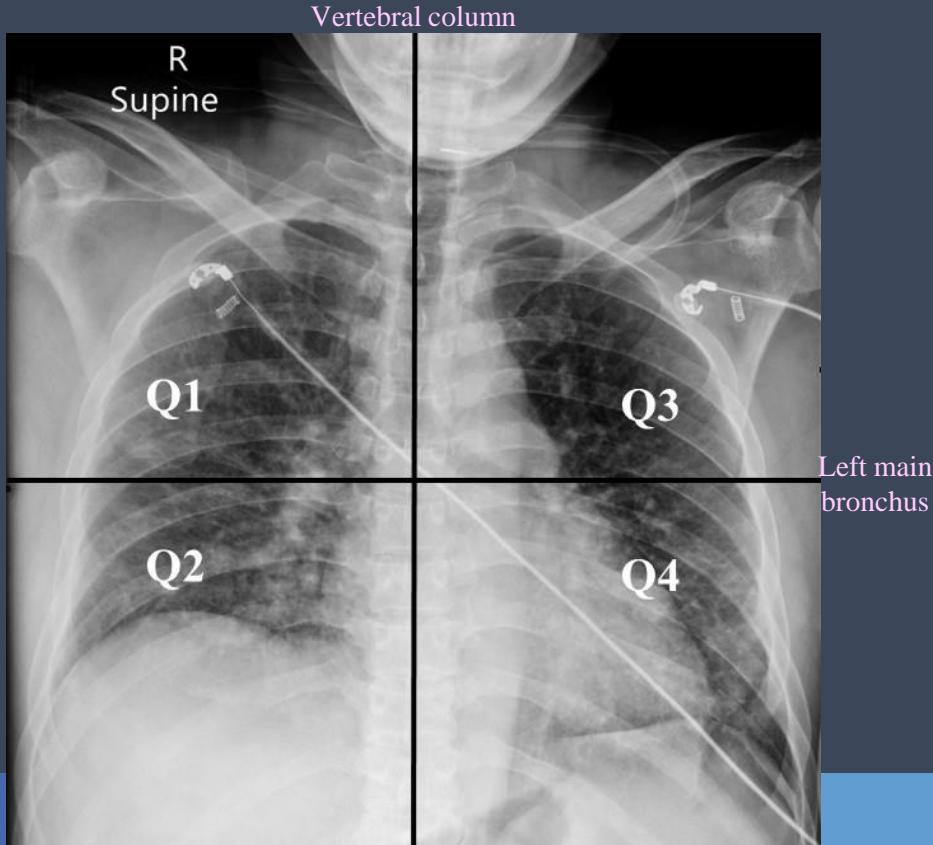
Parenchymal opacity

- Consolidation
- Ground-glass opacity
- Reticular opacity

Distribution of lesion

- Peripheral
- Perihilar
- Right
- Left
- Bilateral
- Upper
- Mid
- Lower
- Diffuse

Image assessment: Severity scores

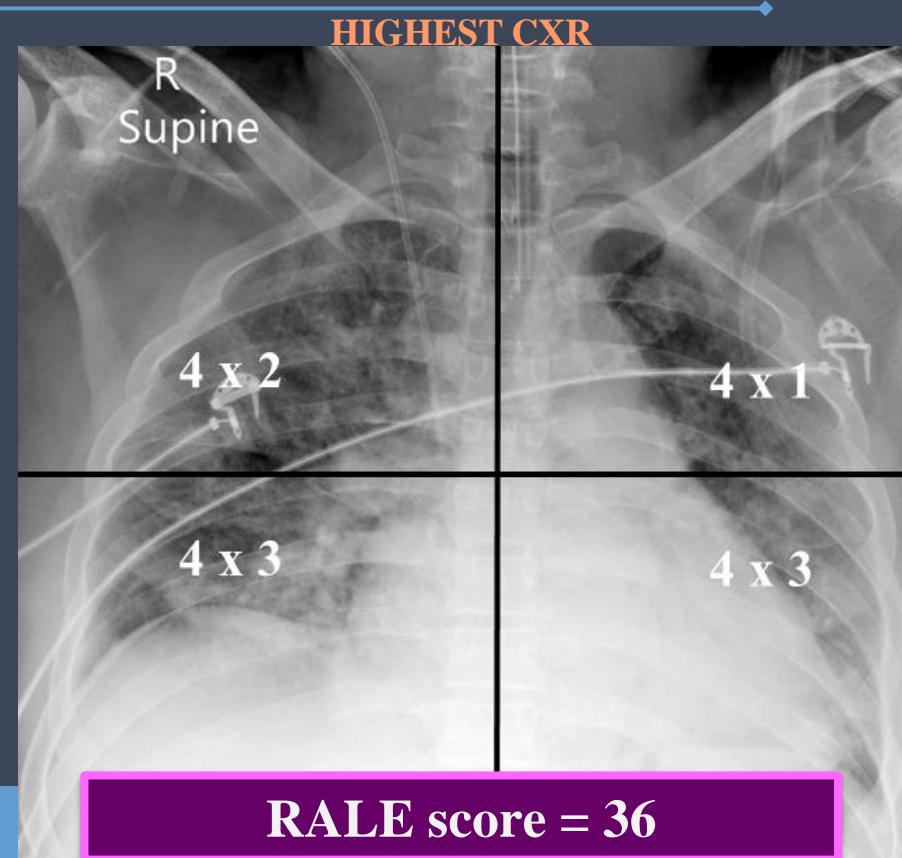
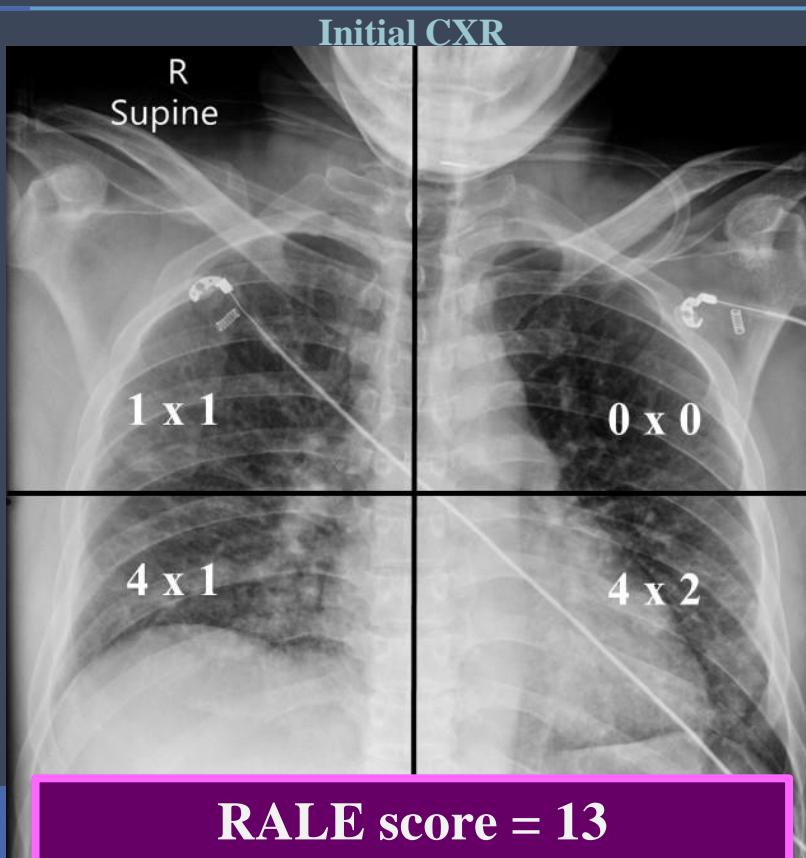

RALE score

- Radiographic Assessment of Lung Oedema (RALE) score

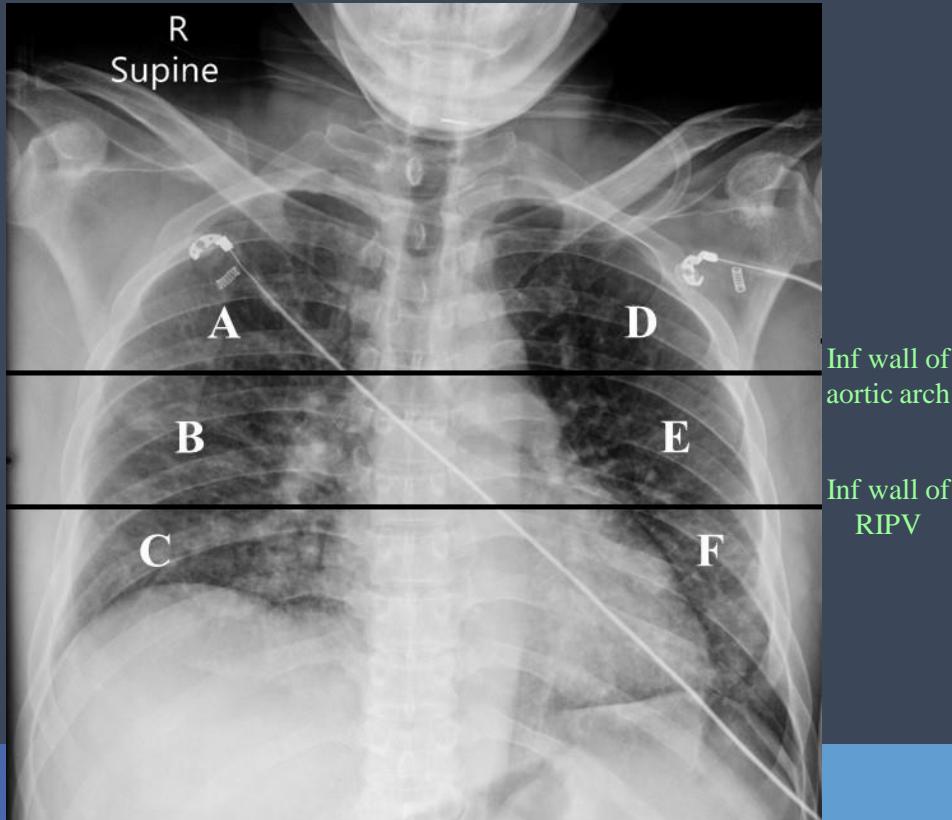
Brixia score

- CXR scoring system for COVID-19 pneumonia

Image assessment: RALE score

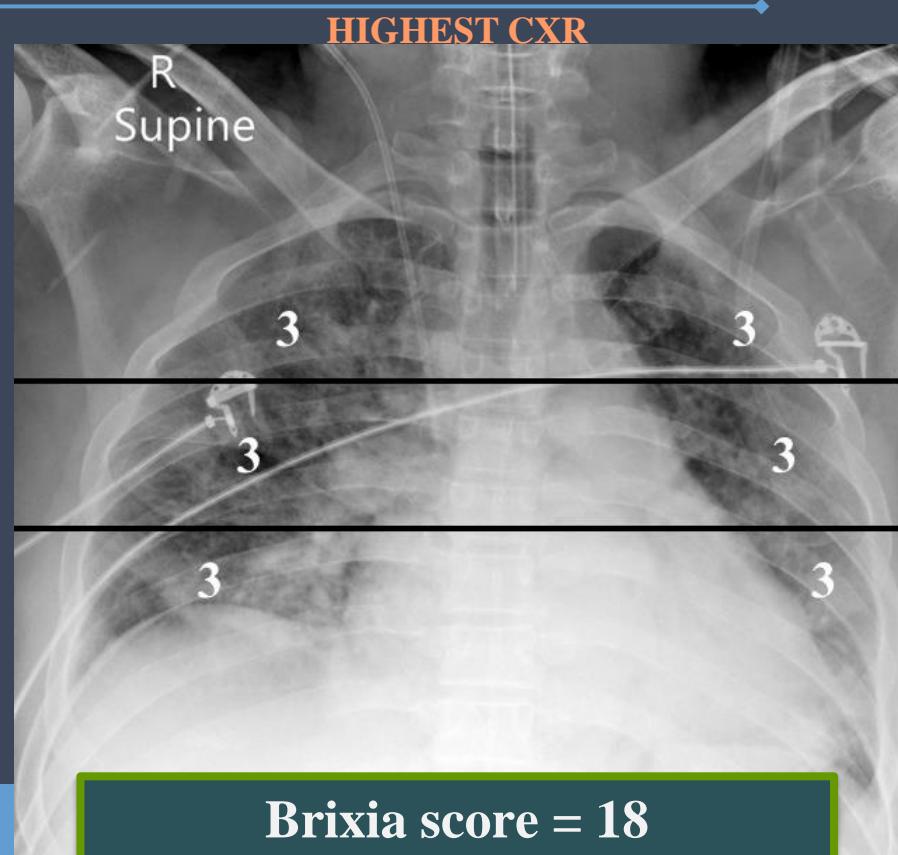
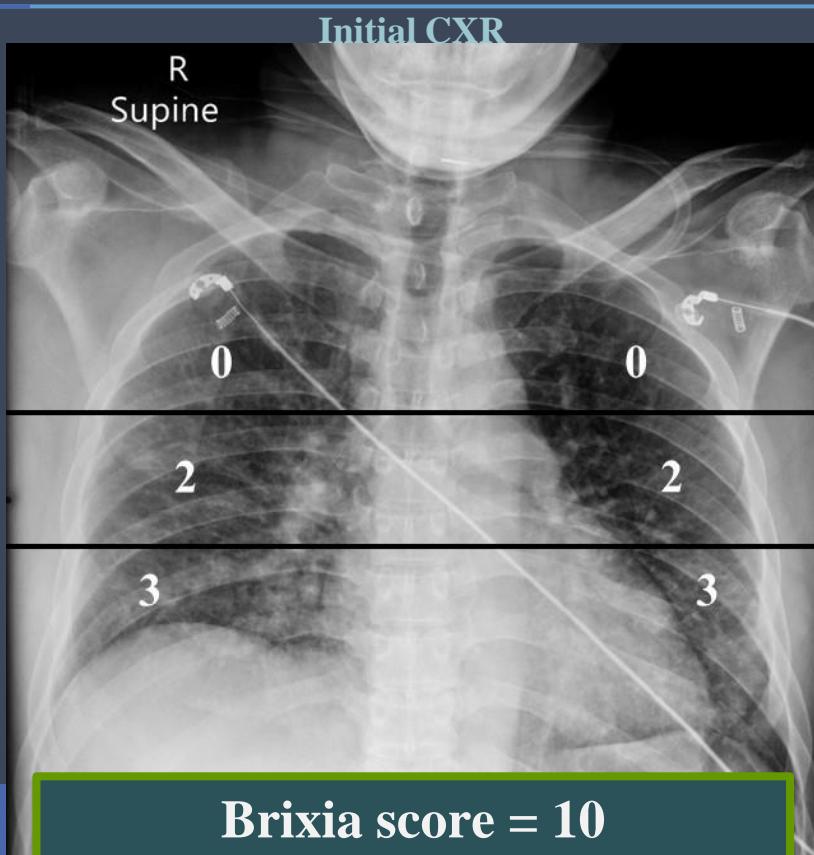



Consolidation score	Extent of alveolar opacities
0	None
1	<25%
2	25-50%
3	50-75%
4	>75%
Density score	Density of alveolar opacities
1	Hazy
2	Moderate
3	Dense


$$\text{Cons} \times \text{Den} = \text{Q score}$$

$$Q1 + Q2 + Q3 + Q4$$

Image assessment: RALE score



Image assessment: Brixia score

Score	Lung abnormalities
0	No lung abnormalities
1	Interstitial infiltrates
2	Interstitial and alveolar infiltrates (interstitial predominance)
3	Interstitial and alveolar infiltrates (alveolar predominance)

Max=18

Image assessment: Brixia score

Statistical analyses

- Normally and non-normally distributed data and categorical variables are presented as **means \pm SDs**, **medians with IQR**, and **numbers with percentages**, respectively.
- Between-group differences in categorical variables were assessed using **Pearson's chi-square**, and continuous variables with normally and non-normally distributed data were assessed using the **unpaired t-test** or **Wilcoxon rank-sum**, respectively.
- The **ROC curves** and **area under curves** were used to determine the **optimal cut-off point** for severe pneumonia and mortality prediction. The performance of the test was summarized by the **sensitivity**, **specificity**, **PPV**, **NPV**, **likelihood ratio**, and **Youden index**.
- Factors associated with the severity scores were analyzed by calculating the **Spearman correlation coefficient**.
- Statistically significant difference was considered at **p value < 0.05** .

Results

Patient characteristics
CXR characteristics
Severity scores

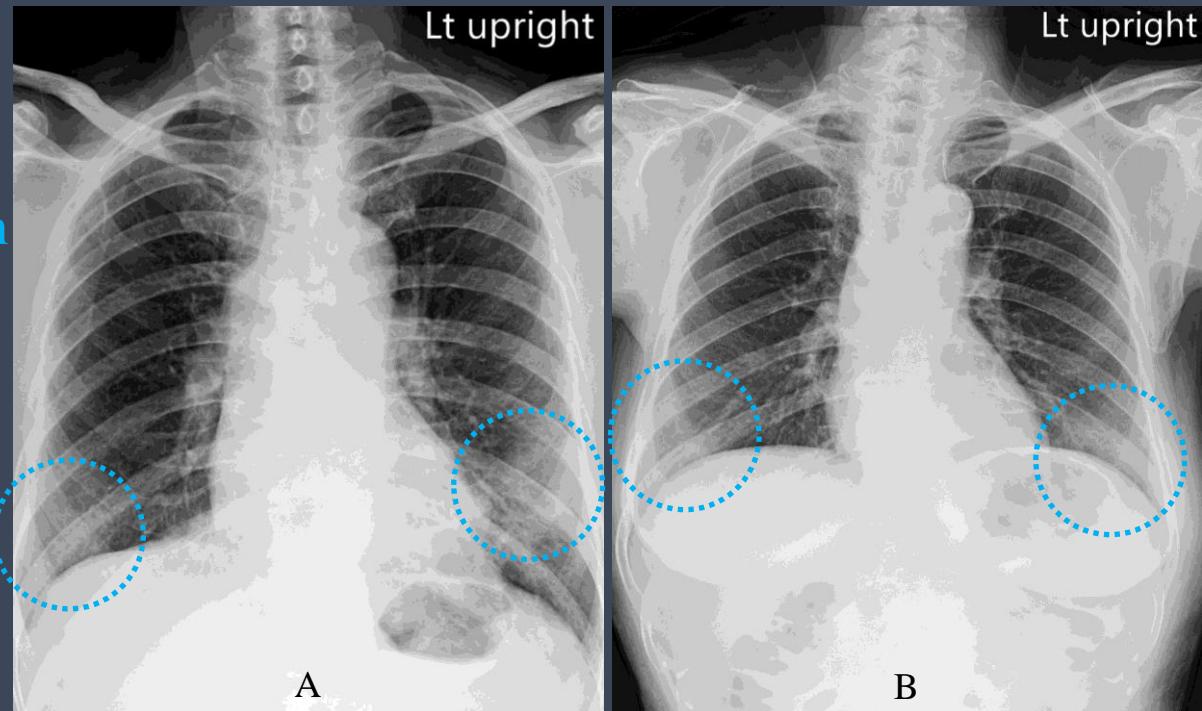

Patient characteristics (N=305)

	Moderate group (N=57)	Severe group (N=248)	<i>p</i> value
Age, mean \pm SD	52.88 \pm 13.59	58.43 \pm 14.54	0.009*
BMI \geq 30 kg/m ²	29.82%	36.69%	0.309
<i>Co-morbidities</i>			
- DM	43.86%	48.39%	0.537
- HT	43.86%	53.63%	0.183
- Heart disease	3.51%	13.71%	0.031*

Patient characteristics (N=305)

	Moderate group (N=57)	Severe group (N=248)	p value
<i>O₂ therapy</i>			
- Nasal cannula	100%	0	
- HFNC	0	91.13%	NA
- ETT	0	20.97%	
O ₂ therapy (days), median (IQR)	4 (3,7)	10 (7,13)	<0.001*
LOS (days), median (IQR)	12 (9,14)	16 (11,21)	<0.001*

Patient characteristics (N=305)



	Moderate group (N=57)	Severe group (N=248)	<i>p</i> value
<i>Discharge type</i>			
- Recovery	75.44%	61.69%	
- Refer to field hospital	22.81%	6.85%	
- Refer to tertiary hospital	0	2.02%	<0.001*
- Death	1.75%	29.44%	

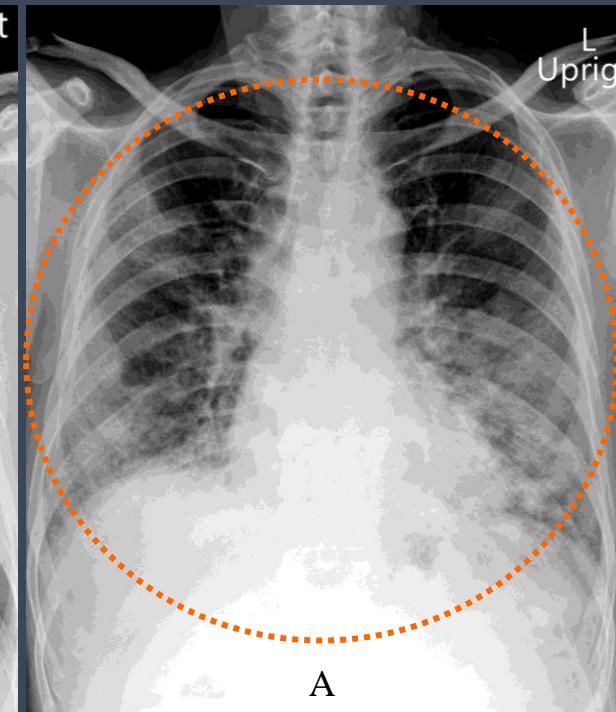
CXR characteristics

Most common findings

- ♥ GGO
- ♥ Peripheral distribution
- ♥ Bilateral lungs
- ♥ Lower zone

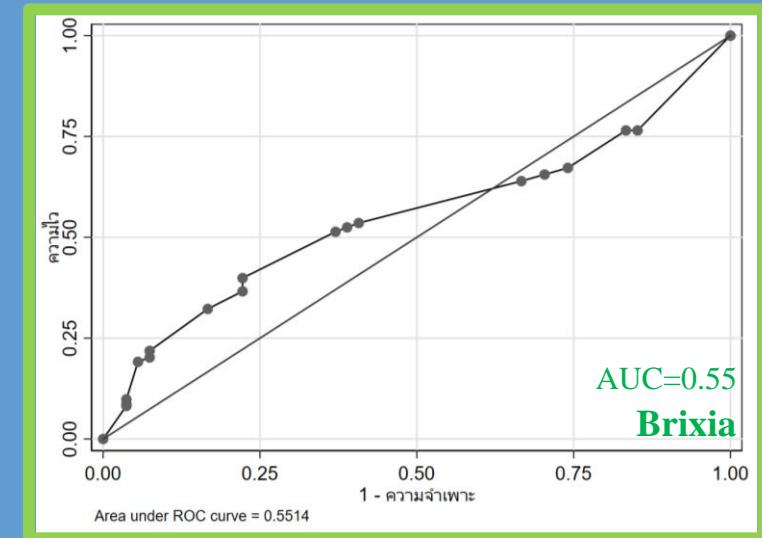
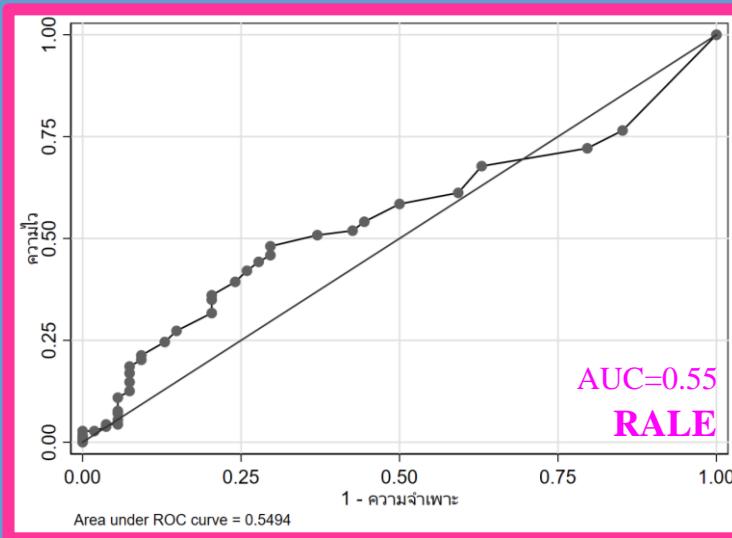


CXR characteristics

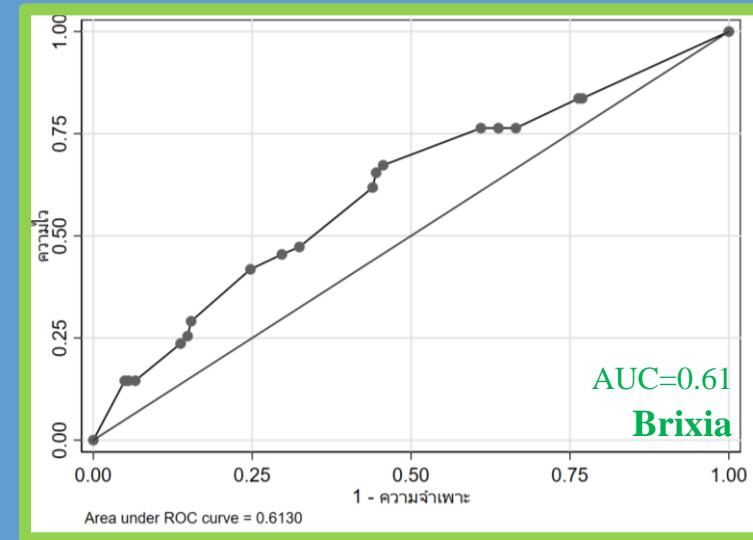
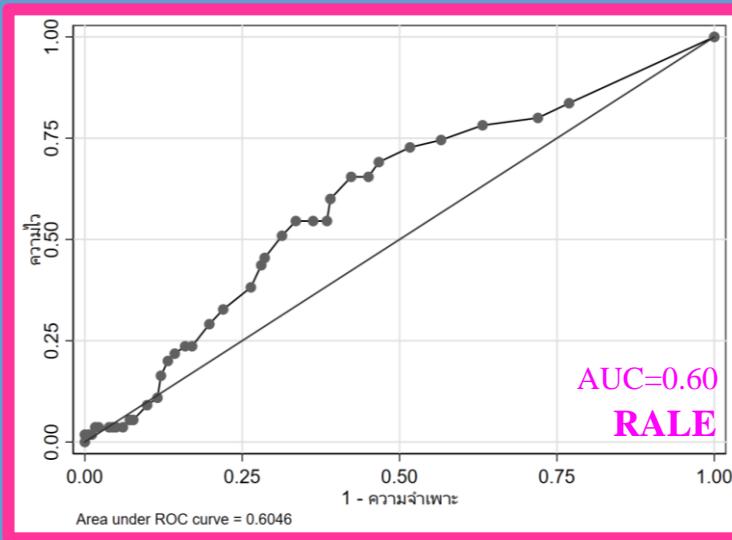

HIGHEST CXR

- Heart icon Consolidation
- Heart icon Perihilar distribution
- Heart icon Diffuse involvement

Initial CXR

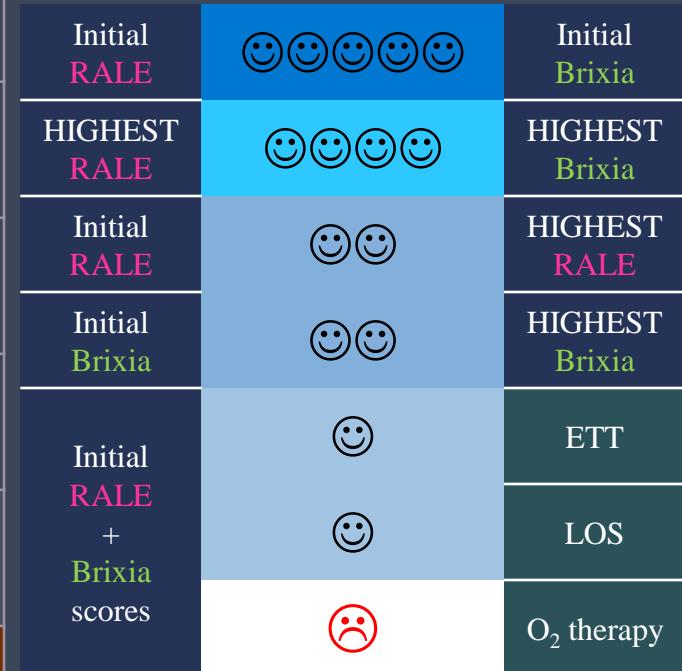


HIGHEST CXR

Severity scores



	Initial CXR (N=240)			HIGHEST CXR (N=304)		
	Moderate (N=55)	Severe (N=185)	p value	Moderate (N=57)	Severe (N=247)	p value
- RALE, median (IQR)	4.5 (2,12)	8 (1,17)	0.268	13 (6.5,19.5)	25 (17,34)	<0.001*
- Brixia, median (IQR)	6 (3,9)	9 (3,12)	0.248	11.5 (6.5,13)	15 (12,18)	<0.001*

ROC curve analysis of Severity scores of Initial CXR to predict Severe pneumonia.

Cut-off point	Sensitivity %	Specificity %	Correct classified	LR+	LR-	Youden index
RALE ≥ 9	48.09%	70.37%	53.16%	1.623	0.738	0.185
Brixia ≥ 10	39.89%	77.78%	48.52%	1.795	0.772	0.177


ROC curve analysis of Severity scores of Initial CXR to predict Mortality.

Cut-off point	Sensitivity %	Specificity %	Correct classified	LR+	LR-	Youden index
RALE ≥ 8	65.45%	57.69%	59.49%	1.547	0.599	0.231
Brixia ≥ 7	67.27%	54.40%	54.85%	1.315	0.784	0.217

Results

Initial Brixia	rho=0.927 n=237 p<0.001					
HIGHEST RALE	rho=0.396 n=236 p<0.001	rho=0.330 n=236 p<0.001				
HIGHEST Brixia	rho=0.282 n=236 p<0.001	rho=0.314 n=236 p<0.001	rho=0.755 n=301 p<0.001			
O ₂ therapy (days)	rho=-0.015 n=237 p=0.819	rho=-0.039 n=237 p=0.550	rho=0.262 n=301 p=<0.001	rho=0.186 n=301 p=0.001		
ETT (days)	rho=0.282 n=237 p=<0.001	rho=0.291 n=237 p<0.001	rho=0.075 n=301 p=0.193	rho=0.318 n=301 p<0.001	rho=-0.047 n=305 p=0.410	
LOS	rho=-0.224 n=237 p=<0.001	rho=-0.259 n=237 p<0.001	rho=0.075 n=301 p=0.193	rho=0.039 n=301 p=0.498	rho=0.674 n=305 p=0.001	rho=-0.245 n=305 p<0.001
	Initial RALE	Initial Brixia	HIGHEST RALE	HIGHEST Brixia	O ₂ therapy (days)	ETT (days)

The correlation of the Initial & Highest severity scores with Clinical outcomes
(Spearman correlation)

Discussion and Conclusion

Discussion: CXR characteristics

Our study	HIGHEST CXR (N=304)		
	Moderate (N=57)	Severe (N=247)	p value
- Perihilar	47.37%	71.66%	<0.001*

Colman et al.	Survivors (N=118)	Non- survivors (N=43)	p value
Ground glass opacification			
- Perihilar	16.9%	37.2%	0.0098*
- Mid zone	42.4%	62.8%	0.0318*

Severity

Mortality

Discussion: RALE score

RALE score	Cut-off point		Sens	Spec	PPV	NPV
Our study	≥9 <i>(Initial CXR)</i>	Severe pneumonia	48.09%	70.37%	84.60%	28.60%
Zimatore et al.	10	ARDS	100%	71%	51%	100%

Discussion: RALE score

RALE score	Cut-off point		Sens	Spec	PPV	NPV
Our study	≥8 <i>(Initial CXR)</i>	Mortality	65.45%	57.69%	31.90%	84.70%
Valk et al.	For every point increase in the RALE score over time the risk of death increased by 3% (95% CI 1–5%)					

Discussion: Brixia score

Brixia score	Outcome	CXR	Median (IQR)	Score
Our study	Severe pneumonia	Initial CXR	9 (3,12)	-
Setiawati et al.	Severe pneumonia	Initial CXR	-	7
Au-Yong et al.	Died	Baseline CXR	8 (3,12)	-
Maroldi et al.	Decease	Admission	9 (6,12)	-
Our study	Severe pneumonia	HIGHEST CXR	15 (12,18)	-
Maroldi et al.	Decease	Highest	14 (11.8,16)	-

Discussion: Brixia score

Brixia score	Cut-off point		Sens	Spec	PPV	NPV
Our study	≥7 (Initial CXR)	Mortality	67.27%	54.40%	30.80%	84.60%
Adjusted RR 1.16 % (95% CI 1.04-1.29%)						
Agrawal et al.	Brixia score more than 12 was associated with increased mortality due to COVID-19 (<i>p</i> value 0.03).					

Discussion

Initial RALE	😊😊😊😊😊	Initial Brixia
HIGHEST RALE	😊😊😊😊	HIGHEST Brixia
Initial RALE	😊😊	HIGHEST RALE
Initial Brixia	😊😊	HIGHEST Brixia
Initial RALE	😊	ETT
+ Brixia scores	😊	LOS
	😢	O ₂ therapy

Limitation

- Retrospective descriptive study
- Single center study

Conclusion

Reference

1. Coronavirus disease (COVID-19) [Available from: https://www.who.int/health-topics/coronavirus#tab=tab_1.
2. Kwee TC, Kwee RM. Chest CT in COVID-19: What the Radiologist Needs to Know. *RadioGraphics*. 2020;40(7):1848-65.
3. Litmanovich DE, Chung M, Kirkbride RR, Kicska G, Kanne JP. Review of Chest Radiograph Findings of COVID-19 Pneumonia and Suggested Reporting Language. *Journal of Thoracic Imaging*. 2020;35(6):354-60.
4. Au-Yong I, Higashi Y, Giannotti E, Fogarty A, Morling JR, Grainge M, et al. Chest Radiograph Scoring Alone or Combined with Other Risk Scores for Predicting Outcomes in COVID-19. *Radiology*. 2022;302(2):460-9.
5. Cecchini S, Di Rosa M, Soraci L, Fumagalli A, Misuraca C, Colombo D, et al. Chest X-ray Score and Frailty as Predictors of In-Hospital Mortality in Older Adults with COVID-19. *J Clin Med*. 2021;10(13).
6. Colman J, Zamfir G, Sheehan F, Berrill M, Saikia S, Saltissi F. Chest radiograph characteristics in COVID-19 infection and their association with survival. *European Journal of Radiology Open*. 2021;8:100360.
7. Hoang SV, Nguyen KM, Huynh TM, Huynh KLA, Nguyen PH, Tran HPN. Chest X-ray Severity Score as a Putative Predictor of Clinical Outcome in Hospitalized Patients: An Experience From a Vietnamese COVID-19 Field Hospital. *Cureus*. 2022;14(3):e23323.
8. Kaleemi R, Hilal K, Arshad A, Martins RS, Nankani A, Tu H, et al. The association of chest radiographic findings and severity scoring with clinical outcomes in patients with COVID-19 presenting to the emergency department of a tertiary care hospital in Pakistan. *PLoS One*. 2021;16(1):e0244886.
9. Maroldi R, Rondi P, Agazzi GM, Ravanelli M, Borghesi A, Farina D. Which role for chest x-ray score in predicting the outcome in COVID-19 pneumonia? *Eur Radiol*. 2021;31(6):4016-22.

Reference

10. Nishant Agrawal SDC, Prashant Jedge, Shivakumar Iyer, John Dsouza. Brixia Chest X-ray Scoring System in Critically Ill Patients with COVID-19 Pneumonia for Determining Outcomes. *Journal of Clinical and Diagnostic Research.* 2021;15(8):OC15-OC7.
11. Reeves RA, Pomeranz C, Gomella AA, Gulati A, Metra B, Hage AN, et al. Performance of a Severity Score on Admission Chest Radiography in Predicting Clinical Outcomes in Hospitalized Patients With Coronavirus Disease (COVID-19). *AJR Am J Roentgenol.* 2021;217(3):623-32.
12. Sathi S, Tiwari R, Verma S, Kumar Garg A, Singh Saini V, Kumar Singh M, et al. Role of Chest X-Ray in Coronavirus Disease and Correlation of Radiological Features with Clinical Outcomes in Indian Patients. *Can J Infect Dis Med Microbiol.* 2021;2021:6326947.
13. Shen B, Hoshmand-Kochi M, Abbasi A, Glass S, Jiang Z, Singer AJ, et al. Initial chest radiograph scores inform COVID-19 status, intensive care unit admission and need for mechanical ventilation. *Clin Radiol.* 2021;76(6):473.e1-e7.
14. Singh A, Lim YH, Annamalaisamy R, Koteyar SS, Chandran S, Kanodia AK, et al. Chest x-ray scoring as a predictor of COVID-19 disease; correlation with comorbidities and in-hospital mortality. *Scottish Medical Journal.* 2021;66(3):101-7.
15. Warren MA, Zhao Z, Koyama T, Bastarache JA, Shaver CM, Semler MW, et al. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. *Thorax.* 2018;73(9):840-6.
16. Borghesi A, Maroldi R. COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. *Radiol Med.* 2020;125(5):509-13.
17. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis.* 2020;20(8):e192-e7.

Reference

18. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: Glossary of Terms for Thoracic Imaging. *Radiology*. 2008;246(3):697-722.
19. Setiawati R, Widyoningroem A, Handarini T, Hayati F, Basja AT, Putri A, et al. Modified Chest X-Ray Scoring System in Evaluating Severity of COVID-19 Patient in Dr. Soetomo General Hospital Surabaya, Indonesia. *Int J Gen Med*. 2021;14:2407-12.
20. Wong HYF, Lam HYS, Fong AH-T, Leung ST, Chin TW-Y, Lo CSY, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. *Radiology*. 2020;296(2):E72-E8.
21. Martínez Chamorro E, Díez Tascón A, Ibáñez Sanz L, Ossaba Vélez S, Borruel Nacenta S. Radiologic diagnosis of patients with COVID-19. *Radiología*. 2021;63(1):56-73.
22. Nagpal P, Narayanasamy S, Vidholia A, Guo J, Shin KM, Lee CH, et al. Imaging of COVID-19 pneumonia: Patterns, pathogenesis, and advances. *Br J Radiol*. 2020;93(1113):20200538.
23. Zimatore C, Pisani L, Lippolis V, Calfee CS, Ware LB, Algera AG, et al. The radiographic assessment of lung edema (RALE) score has excellent diagnostic accuracy for ARDS. *European Respiratory Journal*. 2019;54(suppl 63):OA3299.
24. Zimatore C, Pisani L, Lippolis V, Warren MA, Calfee CS, Ware LB, et al. Accuracy of the Radiographic Assessment of Lung Edema Score for the Diagnosis of ARDS. *Frontiers in Physiology*. 2021;12.
25. Valk CMA, Zimatore C, Mazzinari G, Pierrakos C, Sivakorn C, Dechsanga J, et al. The Prognostic Capacity of the Radiographic Assessment for Lung Edema Score in Patients With COVID-19 Acute Respiratory Distress Syndrome-An International Multicenter Observational Study. *Front Med (Lausanne)*. 2022;8:772056-.

THANK YOU